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Growth of high-quality single crystals is of great significance for research of condensed matter physics. The
exploration of suitable growing conditions for single crystals is expensive and time-consuming, especially for
ternary compounds because of the lack of ternary phase diagram. Here we use machine learning (ML) trained on
our experimental data to predict and instruct the growth. Four kinds of ML methods, including support vector
machine (SVM), decision tree, random forest and gradient boosting decision tree, are adopted. The SVM method
is relatively stable and works well, with an accuracy of 81% in predicting experimental results. By comparison,
the accuracy of laboratory reaches 36%. The decision tree model is also used to reveal which features will take
critical roles in growing processes.

PACS: 81.10.−h, 61.50.Ah, 81.05.−t, 89.20.Ff DOI: 10.1088/0256-307X/36/6/068101

Single crystals are vital prerequisite for exten-
sive scientific research fields, such as condensed mat-
ter physics, surface science, lasers and nonlinear op-
tics. Fundamental studies, e.g., on quantum Hall
effect/fractional quantum Hall effect,[1] Wyle semi-
metal,[2−4] etc., all rely on the production of high-
quality single crystals. Moreover, many useful ex-
perimental techniques are applied to single crystals
exclusively.[5,6] Unfortunately it is not easy to grow
single crystals owing to the complexity of interrelated
factors such as temperature, composition ratios and
atomic radius.[7−10] In particular, growth of ternary
compounds is difficult due to the lack of ternary phase
diagrams. Therefore, production of single crystals is
notoriously labor-wasting and time-consuming. With
the development of machine learning (ML) theory and
faster calculation speed,[11−17] ML makes excellent
forecast by learning from large databases and out-
performs people in various fields.[18−23] Recently, ML
tools have been widely used in material science and
high-throughput computations.[9,24−33]

In this Letter, we focus on single crystal growth
of ternary compounds by flux method, which is one
of the most widely used methods in laboratories. We
collect initial data from laboratory notebooks includ-
ing growth temperature curve, composition elements,

ratios, and flux. The quantity and the quality of the
data used is of importance for generating successful
ML models. Data quality issues that often need to
be addressed include the presence of noise and out-
liers, missing, inconsistent or duplicate data, and data
that are biased or, in some other way, unrepresenta-
tive of the phenomenon or population that the data
are supposed to describe.[34] After excluding reactions
with incomplete laboratory notebook entries, we ob-
tain 775 complete experimental data from group-I,
and 649 data with 272 different kinds remained af-
ter removing duplicate conditions. The single crystals
in our data set of group-I are not only diverse, but also
contain 65 elements. For further verification, we also
obtain 163 data from group-II, and 115 remained after
removing duplicates, data size is shown in Fig. 1(a).
The main purpose of our work is to help the laboratory
to grow new materials. We concern about whether the
model can predict samples of new varieties. In order
to reflect the ability of the model in predicting new
samples, the single crystal types among the training
set, the validation set and the test set are different.

Using ML to judge whether a crystal can be suc-
cessfully grown in given conditions is a problem of
two-category classification. The labels of our model
are whether the single crystal we need is successfully
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grown. The features origin from the growth condi-
tions of the sample (e.g., raw material ratio, flux,
maximum temperature, minimum temperature, cool-
ing rate, maximum temperature residence time), com-
position of sample element physicochemical properties
(such as elemental electronegativity, atomic radius,
elements melting point, elemental volatility, position
of the atom in the periodic table), sample properties
(such as crystal space group, crystal mass), phase dia-
gram extraction information (such as melting point
at different ratios). The detailed features involved
in our model are listed in Tables S1-S3 in the sup-
plementary material. Some processing methods are
taken to make the model more generalizable: evalu-
ating the model with 10-fold crossing-validation and
testing T-statistic hypothesis ensure the results to be
reliable, the boosting method reduces the impact of
uneven distribution of sample data point, principal
component analysis (PCA) filters noise and reduces
features. Considering the size of data, we adopted
SVM, decision tree, random forest (RF) and gradient
boosting decision tree (GBDT) to study this prob-
lem. These ML algorithms are suitable for dealing
with classification problems where data size is small.
The SVM algorithm maps the original feature space
to a higher-dimensional Hilbert space through a kernel
function to find the super plane of the classification.[35]
Decision tree is an algorithm that continuously puri-
fies the nodes of the decision tree by information the-
ory to achieve the best classification.[36] RF[37] and
GDBT[38] are the integrated algorithms of bagging
and boost ideas applied to decision tree algorithms,
respectively (for details see Text B in the supplemen-
tary material).

Figure 1(b) gives the scheme of our feedback mech-
anism as following steps: (i) Extract features from the-
ories of crystal growth and experience. (ii) Train and
test the model based on the selected features. (iii)
Reassess features from model outcomes. (iv) Ana-
lyze the important factors which impact the process
of crystal growth including nucleation and crystalliza-
tion via the outcomes of decision tree. (v) Predict
the results based on new experimental data, and add
the new data with adjusted weights into the origi-
nal dataset to retrain the model. Furthermore, new
laboratory data can help assessing and improving our
model. Accuracy rate, f1 score, recall rate and preci-
sion of successfully grown samples are four indicators
used to evaluate the model.[34] The accuracy and the
f1 score of the model represent the learning ability
of the model. The higher the scores of these two in-
dicators, the stronger the model analysis ability. A
high recall rate for successful sample predictions in-
dicates that it is not easy for a model to misjudge a
successful condition as a failure condition. The accu-
racy of predictions for successful samples represents
the success rate of growth according to the conditions
provided by the model. In order to better apply the
model to crystal growth and study the characteristics

of crystal growth, we compared outcomes of differ-
ent models. Outcomes of SVM, decision tree, RF and
GBDT on group-I and group-II test sets are shown
in Figs. 1(c) and 1(d), respectively. Average statis-
tical results of 10-fold cross-validation of SVM, de-
cision tree, RF and GDBT on group-I and group-II
datasets are shown in Figs. 1(e) and 1(f). The SVM
model has stable and better performance. Therefore,
we choose SVM to assist in growing crystals in ex-
periments. And decision tree is used to clarify feature
importance, which is more visualized. Group I studied
the single crystal growth of ternary compounds. Since
the data amount of the ternary compounds of group II
is relatively small, group-II data contain binary com-
pounds. The SVM trained model on data of groups I
and II has accuracies of 81% and 78%, respectively.
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Fig. 1. Illustration of datasets and models. (a) Data
size from group I and group II. (b) Scheme of the feed-
back mechanism. (c)–(d) Outcomes of SVM, decision tree,
random forest and GDBT on group-I and group-II test
sets, respectively. The text in the boast represents the la-
bel category. (e)–(f) Average statistical results of 10-fold
cross validation of SVM, decision tree, random forest and
GDBT on group-I and group-II datasets, respectively. The
text in the boast represents the label category.

Table 1. Outcomes of the SVM model.

Group I test data
Accuracy Recall rate F1-score Data size

Failure 0.84 0.93 0.88 72
Success 0.67 0.43 0.53 23
Average/sum 0.80 0.81 0.80 95
Group II test data
Failure 0.83 0.83 0.83 23
Success 0.60 0.60 0.60 10
Average/sum 0.76 0.76 0.76 33

To demonstrate the performance of our model,
confusion matrixes are shown in Table 1. Table 1
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shows the SVM result on group-I test set, reaching
average accuracy, average recall rate, f1-score of 81%,
81%, and 80%. The corresponding values on group II
are 76%, 76%, and 76%, respectively, as also shown
in Table 1. The stability of our model is strong, and
the prediction results of different laboratories are rela-
tively consistent. It is worth mentioning that the test
set contains totally different samples from training set,
and thus revealing great generalization capability of
our model. From all above, it is strongly believed
that our SVM model is pretty promising in instruct-
ing single crystal growth condition exploration. What
we have already carried out is predicting outcomes
for given growth conditions. The precision on failed
samples of our model is high, so discard the condi-
tions which the model considers as failure. New data
are taken from the laboratory as extra data. In these
data, the success rate is 34%. Meanwhile, if we only
choose the conditions recommended by our model, the
success rate reaches as high as 71%. The accuracy of
ML’s judgment on success conditions is significantly
higher than that of human, which largely avoids time
and money wasting.

A successful model should both increase synthesis
success rate and give physical insight. There is no in-
tersection of features and convolution in the decision
tree training process, so the role of independent fea-
tures in the whole learning process is visible. For this
reason, we use decision tree with 32 features (shown
in Table 2) to train on data from both the groups
and present the feature importance in Fig. 2. For con-
venience of discussion, we define the compound we
studied as A𝑥B𝑦C𝑧 and the flux used as M, where A,
B, and C are elements, 𝑥, 𝑦 and 𝑧 are their relative
ratios. Usually A is an alkali metal, alkaline earth
metal or rare earth element, B is a transition metal,

and C belongs to 3rd–6th main groups. As shown in
Fig. 2(a), the difference of electronegativity between
flux and composition elements plays the most impor-
tant role. Meanwhile, the temperature curve during
the synthesis process is considered to be important,
without doubt. And those factors illustrate elements
themselves, such as composition ratio, element radius
and dissolve point in flux, strongly influence the syn-
thesis procedure. However, density, the usually ig-
nored factor by experimentalists, has a significant im-
pact on single crystal growth. From group-II dataset,
the similar result is presented.
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Fig. 2. Feature importance from the decision tree model:
(a) feature importance of group-I data, (b) feature impor-
tance of group-II data.

Table 2. Feature description, i.e., the meaning of the features from decision tree model in Fig. 2.

Feature name Description
Phase_A/B/C The lowest temperature at which A/B/C is completely dissolved
Phase_max The maximum of phase_A, phase_B and phase_C
Boiling_M Boiling point of flux M
Melting_M Melting point of flux M

Electronegativity_M Atomic electronegativity of flux M
Radius_M Atomic radius of flux M

Radius_A/B/C Atomic radius of A/B/C
Electronegativity_A/B/C Atomic electronegativity of A/B/C

Melting_A/B/C Melting point of A/B/C
Tem_h Maximum temperature

Ratio_A/B/M/N Molar ratio of raw material A/B/M/N and C
Mass Molecular mass of the sample

Space_Group Space group of samples
Density_std Standard deviation of all elemental densities

Temd Cooling rate
v Cooling rate

Tem_l centrifugal temperature
Radius_diff_max/ave Maximum/mean of radius difference between elements and flux M

Electronegativity_diff_max Maximum of electronegativity difference between elements and flux M
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The tree of single crystal growth process from
group I is shown in Fig. 3. The conditions collected
are artificially selected for growing single crystals, that
is to say, these growth conditions are considered to
be successful by human experience. In the absence
of ternary phase diagram, experimentalists generally
use a binary phase diagram as an alternative to se-
lect growth conditions. Therefore, the tree graph can
show some factors that are often overlooked or less
considered in laboratories. Several rules are summa-
rized from the decision tree. Some of them are well un-
derstood but re-discovered by ML, for example, better

single crystal growth is associated with (a) lower cool-
ing rate and (b) lower melting point of B in flux. ML
also discovers some rules without clear explanatory
theory, which are of particular interest. For example,
ML suggests that it is difficult to grow single crystals:
(a) the 𝑥/𝑧 and 𝑦/𝑧 values are relatively large, (b) the
average difference between the liquid phase density of
flux and the components of single crystal (A, B, and
C defined above) is large. Furthermore, it is recom-
mended to choose a flux with a smaller maximum of
absolute electronegativity differences among A, B and
C.
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and the green color is represented in this branch, good sample is grown, and red indicates that no good sample is
obtained.
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In summary, we have applied the SVM model to

train and test laboratory single crystal growth data.
The success rate of our model is twice the rate of man-
ual conditions. Meanwhile, the decision tree model is
used to assess the importance of features and provides
some new rules about single crystal growth without
clear explanation. Although the samples we used to
test our models are limited, based on the scientific and
rigorous statistical evaluation methods and diversity
samples, we have an enough assessment of the effects
of the models (for details, see Text B in the supple-
mentary material). In other words, our model can be
applied to other materials with university and gener-
ality. The ML is proved to be helpful for instructing
single crystal growth, despite the limited size of the
data base and method of growth. It is easy to extend
our study to other growth methods if corresponding
data are available. With continuous growing of the
databases, the ML will be better at the prediction of
single crystal growth and uncover more essential rules
in the process.
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